ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ

Општинско такмичење из математике ученика основних школа

10.02.2024.

VII разред

1. Одреди цео број а и природан број n, тако да буде тачна једнакост:

$$
a^{n}=\frac{0,125^{4} \cdot(-4,5)^{6} \cdot(-0,375)^{6} \cdot 125}{2,25^{9} \cdot 0,5^{18}}
$$

2. На колико начина се број 2024 може приказати као производ три различита природна броја? Редослед чинилаца није битан.
3. Странице троугла $A B C$ су $A B=21 \mathrm{~cm}, B C=17 \mathrm{~cm}, A C=10 \mathrm{~cm}$. У унутрашњој области троугла дата је тачка M чије је растојање од странице $A B$ једнако 2 cm , а од странице $B C$ једнако 4 cm . Одреди растојање тачке $М$ од странице $A C$.
4. Одреди све природне бројеве мање од 1000 чији је производ са бројем 7 једнак кубу неког природног броја.
5. Нека је D тачка хипотенузе $A B$ правоуглог троугла $A B C$, таквог да је $C A=C D=\sqrt{5}$ и $C B=2 \sqrt{5}$. Израчунај обим и површину троугла $B C D$.

Сваки задатак се бодује са по 20 бодова.
Израда задатака траје 120 минута.
Решење сваког задатка кратко и јасно образложити.

Признавати сваки тачан поступак који се разликује од кључа. Бодовање прилагодити конкретном начину решавања.

1. Како је $0,125^{4}=\left(\frac{1}{8}\right)^{4}=\frac{1}{2^{12}}$ [2 бода], $(-4,5)^{6}=4,5^{6}=\left(\frac{9}{2}\right)^{6}=\frac{3^{12}}{2^{6}}[2$ бода], $(-0,375)^{6}=0,375^{6}=\left(\frac{3}{8}\right)^{6}=\frac{3^{6}}{2^{18}} \quad\left[\begin{array}{ll}2 & \text { бода }], \quad 125=5^{3}\end{array}\left[\begin{array}{ll}1 & 60 д\end{array}\right]\right.$,
 $\frac{\frac{1}{2^{12}} \cdot \frac{3^{12}}{2^{6}} \cdot \frac{3^{6}}{2^{18}}}{\frac{3^{18}}{2^{18}} \cdot \frac{1}{2^{18}}}$
2. $2024=1 \cdot 2^{3} \cdot 11 \cdot 23$ [6 бодова]. Уочимо све производе у којима је 1 један од чинилаца. Тада је 2024 $=1 \cdot 2 \cdot 1012=1 \cdot 4 \cdot 506=1 \cdot 8 \cdot 253$ $=1 \cdot 11 \cdot 184=1 \cdot 22 \cdot 92=1 \cdot 23 \cdot 88=1 \cdot 44 \cdot 46$ [сваки производ по 1 бод]. Ако је 2 најмањи од чинилаца, све могућности $2 \cdot 4 \cdot 253=2 \cdot 11$ $\cdot 92=2 \cdot 22 \cdot 46=2 \cdot 23 \cdot 44$ [сваки производ по 1 бод]. Ако је 4 најмањи од чинилаца, сви производи су $4 \cdot 11 \cdot 46=4 \cdot 22 \cdot 23$ [сваки производ по 1 бод]. Ако је 8 најмањи чинилац, постоји само један производ $8 \cdot 11 \cdot 23$ [1 бод]. За сваки нетачно наведени производ одузети по 1 бод.
3. Површину троугла $A B C$ можемо израчунати користећи Херонов образац: $P=\sqrt{s(s-a)(s-b)(s-c)}$, где је s полуобим троугла, тј. $s=24$ cm , па је $P=\sqrt{24 \cdot 3 \cdot 7 \cdot 14}=84 \mathrm{~cm}^{2}$ [8 бодова]. Са друге стране површину троугла $A B C$ можемо израчунати као збир површина троуглова $A B M, B M C$ и $A M C$, у којима су висине заправо растојања тачке M од страница троугла. Следи да је $P=\frac{21 \cdot 2}{2}+\frac{17 \cdot 4}{2}+\frac{10 \cdot x}{2}=$ $84 \mathrm{~cm}^{2}$ [8 бодова], одакле је тражено растојање $x=5,8 \mathrm{~cm}$ [4 бода].

4. (МЛ $57 / 2$) Нека је x такав број. Тада је $7 x=y^{3}$, за неки природан број у. Због дељивости леве стране са 7, следи да таква мора бити и десна страна, па је $y=7 k$, за неки природан број k [5 бодова]. Одатле следи да је $7 x=7^{3} \cdot k^{3}$, односно $x=49 \cdot k^{3}$ [5 бодова]. Ако је $k \geq 3$, онда је $x=49 \cdot k^{3} \geq 49 \cdot 3^{3}=1323>1000$, што се противи услову задатка да је $x<1000$. Дакле, важи $k<3$ [6 бодова]. 3а $k=1$ је $x=49$ [2 бода], а за $k=2$ је $x=392$ [2 бода].
5. (МЛ 58/1) Нека је Е подножје висине из темена С на хипотенузу $A B$. На основу Питагорине теореме је $A B=\sqrt{A C^{2}+B C^{2}}=5$ [1 бод]. Из површине троугла $A B C$ је $P=\frac{A C \cdot B C}{2}=5=\frac{A B \cdot E C}{2}=\frac{5 \cdot E C}{2}$, одакле следи да је $E C=2$ [4 бода]. Даље, из Питагорине теореме у једнакокраком троуглу $A D C$ је $E D=A E=\sqrt{A C^{2}-E C^{2}}=1$ [4 бода], па је $B D=A B-A D=3$ [5 бодова]. Обим троугла $B C D$ је онда једнак $3+3 \sqrt{5}$ [3 бода]. Површину троугла $B C D$ можемо добити када од површине троугла $A B C$ одузмемо површину троугла $A C D$ и она је $P=5-\frac{A D \cdot E C}{2}=3$ [3 бода].

